Evaluating the Performance of Photogrammetric Products Using Fixed-Wing UAV Imagery over a Mixed Conifer-Broadleaf Forest: Comparison with Airborne Laser Scanning
نویسندگان
چکیده
Unmanned aerial vehicles (UAVs) and digital photogrammetric techniques are two recent advances in remote sensing (RS) technology that are emerging as alternatives to high-cost airborne laser scanning (ALS) data sources. Despite the potential of UAVs in forestry applications, very few studies have included detailed analyses of UAV photogrammetric products at larger scales or over a range of forest types, including mixed conifer–broadleaf forests. In this study, we assessed the performance of fixed-wing UAV photogrammetric products of a mixed conifer–broadleaf forest with varying levels of canopy structural complexity. We demonstrate that fixed-wing UAVs are capable of efficiently collecting image data at local scales and that UAV imagery can be effectively utilized with digital photogrammetric techniques to provide detailed automated reconstruction of the three-dimensional (3D) canopy surface of mixed conifer–broadleaf forests. When combined with an accurate digital terrain model (DTM), UAV photogrammetric products are promising for producing reliable structural measurements of the forest canopy. However, the performance of UAV photogrammetric products is likely to be influenced by the structural complexity of the forest canopy. Furthermore, we highlight the potential of fixed-wing UAVs in operational forest management at the forest management compartment level, for acquiring high-resolution imagery at low cost. A future direction of this research would be to address the issue of how well the photogrammetric products can predict the actual structure of mixed conifer–broadleaf forests.
منابع مشابه
Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry–finnish Experiences of the 3d Techniques
Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widesprea...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملAutomatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery
Climate change has increased the occurrence of heavy storms that cause damage to forests. After a storm, it is necessary to obtain knowledge about the injured trees quickly in order to detect and aid in collecting the fallen trees and estimate the total damage. The objective in this study was to develop an automatic method for storm damage detection based on comparisons of digital surface model...
متن کاملAssessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds
This study investigates the potential of unmanned aerial vehicles (UAVs) to measure and monitor structural properties of forests. Two remote sensing techniques, airborne laser scanning (ALS) and structure from motion (SfM) were tested to capture three-dimensional structural information from a small multi-rotor UAV platform. A case study is presented through the analysis of data collected from a...
متن کاملRemote Sensing of Vegetation from Uav Platforms Using Lightweight Multispectral and Thermal Imaging Sensors
Current high spatial resolution satellite sensors lack the spectral resolution required for many quantitative remote sensing applications and, given the limited spectral resolution, they only allow the calculation of a limited number of vegetation indices and remote sensing products. Additionally if short revisit time is required for management applications, the cost of high resolution imagery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018